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Abstract. Recent studies have shown that brain lesions following stroke can be
probabilistically mapped onto disconnections of white matter tracts, and that the
resulting “disconnectome” is predictive of the patient’s behavioral deficits. Dis-AQ1

connectome maps are sparse, high-dimensional 3D matrices that require unsuper-
vised dimensionality reduction followed by supervised learning for prediction of
the associated behavioral data. However, the optimal machine learning pipeline
for disconnectome data still needs to be identified. We examined four dimension-
ality reduction methods at varying levels of compression and used the extracted
features as input for cross-validated regularized regression to predict the asso-
ciated language and motor deficits. Features extracted by Principal Component
Analysis and Non-Negative Matrix Factorization were found to be the best pre-
dictors, followed by Independent Component Analysis and Dictionary Learning.
Optimizing the number of extracted features improved predictive accuracy and
greatly reduced model complexity. Moreover, the choice of dimensionality reduc-
tion technique was found to optimally combine with a specific type of regularized
regression (ridge vs. LASSO). Overall, our findings represent an important step
towards an optimal pipeline that yields high prediction accuracy with a small
number of features, which can also improve model interpretability.

Keywords: Stroke · Structural connectome · Disconnections · Machine
learning · Feature extraction · Dimensionality reduction · Predictive modeling

1 Introduction

Stroke is a major cause of serious disability for adults and it can affect multiple behav-
ioral domains, from motor control to language and cognition [1]. A classic approach in
cognitive neuroscience is to establish which brain lesion is associated to a specific behav-
ioral deficit [2]. The reverse inference is more challenging because lesion information
is used to predict the behavioural performance of new (i.e., held out) patients despite
the considerable individual variability of lesion-behavior relationships [3]. Moreover,
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2 M. Zorzi et al.

white-matter lesions cause structural disconnections that produce widespread dysfunc-
tion of brain networks [4] and can be better predictors of behavioral deficits than lesion
site [1, 5, 6].

Assessing damage to the structural connectome requires complex neuroimaging
methods (i.e., diffusion tensor imaging) that are difficult to implement in clinical prac-
tice. However, Foulon et al. [7] recently proposed an indirect method for estimating
structural disconnection from clinical structural Magnetic Resonance Imaging (MRI)
scans. Using the connectome of healthy individuals as reference atlas, the method esti-
mates the probability that a lesion at any given location (voxel) causes disconnection
of white matter tracts. Therefore, a disconnectome map indicates, for each voxel in a
standard brain template, the probability of structural disconnection. Salvalaggio et al.
[6] showed that disconnectome maps can be used to predict behavioral deficits. Their
machine learning pipeline was adapted from previous work on structural lesions [1, 8]
and was not optimized for disconnectome data. In short, Principal Component Analysis
(PCA) was used for dimensionality reduction and the components cumulatively explain-
ing 95% of the variance were retained as features for prediction. The latter was based
on cross-validated ridge regression using a behavioral score as outcome variable.

Unsupervised dimensionality reduction is a necessary step for neuroimaging data,
which typically have a much greater number of features than observations [9]. A variety
of techniques can be used to extract a limited number of features that can compactly
describe the data distribution. Prediction from a compact set of brain-related features can
then be carried out using regularized regression methods such as ridge regression [4] or
Least Absolute Shrinkage and Selection Operator (LASSO) [10]. Regularized regression
includes a penalty term that pushes the estimated coefficients of irrelevant features toward
zero, limiting the risk of multicollinearity and overfitting [11, 12]. Moreover, regularized
methods often also improve model interpretability [13, 14], making them particularly
suitable for the analysis of neuroimaging data [15].

In the present study, we systematically investigated the effect of both feature extrac-
tion techniques and regularized regression on predictive accuracy, in order to identify
the most effective machine learning pipeline for disconnectome data. Indeed, different
methods can show considerable variability in performance depending on the type of neu-
roimaging data and task considered [9, 15, 16]. We recently investigated this issue in the
context of resting-state functional connectivity data [10]. Here we extended our approach
to disconnectome maps of stroke patients, which were used to predict behavioral scores
in the language and motor domains. Disconnectome maps were first processed using dif-
ferent dimensionality reduction methods: Principal Component Analysis, Independent
Component Analysis, Non-Negative Matrix Factorization and Dictionary Learning. The
extracted features were then used as predictors for cross-validated regularized regres-
sion. We assessed the predictive performance while systematically varying the number
of extracted features for each dimensionality reduction method as well as a function of
the type of regularization method used for supervised learning. Finally, we examined
the quality of the brain maps that display disconnectome voxels that are most predictive
of behavioral performance in each domain.

In summary, structural disconnectomes [7] represent a releatively new type of neu-
roimaging data that has not been systematically approached with machine learning tech-
niques. With respect to the state-of-the-art [6], the main contributions of the present work
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Assessment of Machine Learning Pipelines 3

include: i) the consideration of a broad range of dimensionalty reduction techniques; ii)
the evaluation of different types of regularized regression; iii) the inclusion of feature
selection to reduce the number of predictors; iv) the assessment of predictive accuracy
across multiple measures that also consider model complexity.

2 Materials and Methods

2.1 Participants and Data Acquisition

Behavioral and MRI data were obtained from a previously published study [1], in
which 132 symptomatic stroke patients underwent MRI scanning and behavioral testing
1–2 weeks after the stroke occurred. The data for each patient consisted of a 3D image of
the lesion, reconstructed from the original MRI image (see [1] for details) and registered
to a common coordinate space provided by the Montreal Neurological Institute (MNI
space, 2 mm isovoxel resolution) using affine and diffeomorphic deformations. Struc-
tural disconnections for 131 patients were computed in [6] from the lesion image with
the BCB-toolkit [7], using 176 healthy controls from the “Human Connectome Project”
7T diffusion-weighted imaging dataset as a reference to track fibers passing through each
lesioned voxel. In the resulting disconnectome map, the value in each voxel indicates
the probability of disconnection from 0 to 1 (see Fig. 1). Note that each map is a sparse
high-dimensional 3D matrix, with size 91 × 109 × 91.

Behavioral assessment spanned several cognitive domains [1]. In the present work
we focus on language and motor scores, which are available for n = 116 and n = 108
patients, respectively. For each domain we used an overall “factor score” [1, 6], which

Fig. 1. a) The 3D disconnectome map of a sample stroke patient is displayed here using 5 axial
slices. A localized right hemisphere lesion involving the thalamus and the lateral occipital cortex
(overlayed on the map in blue color) produces more widespread white matter disconnections (with
probability indexed by the red-yellow scale) that include posterior thalamic radiation, superior
corona radiata, and extend to the left hemisphere through the splenial part of the corpus callosum.
b) Machine learning pipelines assessed in our study. At each processing stage, the performance
of different methods was systematically compared to establish the optimal combination of feature
extraction and regularized regression techniques. (Color figure online)
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4 M. Zorzi et al.

captures the shared variance of several sub-tests. For example, the language factor score
is the first principal component accounting for 77.3% of the variance across a variety
of language tasks. The motor factor score expresses contralesional motor performance
(e.g., right limb for left hemisphere damage and vice versa). Each factor score was
normalized to represent impaired performance with negative values.

2.2 Unsupervised Feature Extraction

Unsupervised feature extraction was performed using the entire dataset (n = 131 and
p = 902,629), to take advantage of all patients’ data regardless of the availability of
specific neuropsychological scores. All feature extraction methods used in the present
work are linear, which means that they aim to find a weight matrix W that can transform
the original n × p data matrix X into a new set of k features, with k < p and usually
k < n, such that:

F = XW (1)

where F is the feature space. Since choosing the value of k is nontrivial, we systematically
varied k from 5 to n – 1, with step size = 5, where n is the number of patients entered in the
regularized regression. A cross-validation procedure was then used to select the optimal
value of k (see Sect. 2.4 below). To compare the compression ability of the different
feature extraction methods, the reconstruction error was calculated as the mean squared
error (MSE) between the original disconnection maps X and the reconstructed maps XR,
for each value of k. The original maps can be reconstructed by simply backprojecting
the feature set into the original input space using the transposed weight matrix:

XR = FW T (2)

Principal Component Analysis (PCA). PCA Linearly Transforms the Input Data into
a Smaller Set of Uncorrelated Features Called Principal Components, Sorted by the
Explained Data Variance [17]. The Input Data is First Centered, so that It Has Zero-
Mean. The Eigenvalues and Eigenvectors of the p × p Covariance Matrix XT X Are then
Computed Using Matrix Factorization via Singular Value Decomposition:

X = UDW T (3)

where U is an n × n matrix containing the eigenvectors of XXT , D is an n × p matrix
containing the square root of the eigenvalues on the diagonal, and W is a p × p matrix
containing the eigenvectors of XT X. When p > n there are only n – 1 non-zero eigen-
values, so only the first n – 1 columns of D and W are kept. Eigenvectors are sorted in
descending order of explained variance. Hence, W contains n – 1 principal components,
expressed as a set of p weights that can map the original variables in a new (compressed)
feature space. Since PCA is a deterministic method, it was performed only once, and
the first k features were then iteratively selected. The other feature extraction methods
are probabilistic in nature, so the procedure was repeated for each value of k.
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Assessment of Machine Learning Pipelines 5

Independent Component Analysis (ICA). ICA Assumes that a p-dimensional Signal
Vector X T

i,∗ is Generated by a Linear Combination of k Features (with k < = p) that Are
Assumed to Be Independent and Non-gaussian [18], Leading to:

X T
i,∗ = AFT

i,∗ (4)

where A is a p × k unmixing matrix, which maps the signal in the sources, and F is the
feature vector. Hence, the features can be obtained by:

FT
i,∗ = WX T

i,∗ (5)

where W is the inverse of the unmixing matrix A. The input data is first centered, and
then further pre-processed through whitening so that a new vector with uncorrelated
components and unit variance is obtained. The FastICA function of the scikit-learn
library was used, and PCA was used for data whitening [18].

Non-negative Matrix Factorization (NNMF). NNMF is a Form of Matrix Factoriza-
tion into Non-negative Factors W and H [19], Such that the Linear Combination of Each
Column of W Weighted by the Columns of H Can Approximate the Original Data X:

X ≈ WH (6)

NNMF aims to minimize the following loss function:

‖A − WH‖2
F

subject to W , H ≥ 0 (7)

The nnmf MATLAB function with the “multiplicative update algorithm” was used.

Dictionary Learning (DL). The DL Algorithm, Sometimes Known as Sparse Coding,
Jointly Solves for a p × k Dictionary W and the New Set of Features F that Best Represent
the Data. To Obtain Only Few Non-zero Entrances an Additional L1 Penalty Term is
Included in the Cost Function:

(W , F) = min
(W ,F)

1

2

∥
∥
∥X − FW T

∥
∥
∥

2

2
+ λ‖F1‖

subject to
∥
∥Wj

∥
∥

2 ≤ 1,∀ j = 1, . . . , k (8)

where λ is the L1 penalty coefficient, controlling for the sparsity of the compressed
representation [20]. The DictionaryLearning function of the scikit-learn library was
used.

2.3 Regularized Regression

The features extracted by each unsupervised learning method were then used as regres-
sors for the prediction of the language and motor scores. Note that only the subjects with
available target scores were kept in this phase. The regressors were normalized and then
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6 M. Zorzi et al.

entered either a ridge regression or a LASSO regression [10, 21]. In both cases the loss
function can be defined as:

min
β

(
1

2n

∑n

i=1

(

yi − xT
i β

)2 + λR

)

(9)

where n is the number of observations, yi is the prediction target, xi is the data observation,
β represents the p regression coefficients, and R is the regularization term, weighted by
the non-negative coefficient λ. In the case of ridge regression, the regularizer is defined
as:

R(β) =
∑p

j=1
β2

j (10)

while in the case of LASSO regression the regularizer is defined as:

R(β) =
∑p

j=1

∣
∣βj

∣
∣ (11)

The main difference is that LASSO forces the estimates of non-predictive coefficients
to have exactly-zero values, whereas the ridge regularization shrinks those coefficients
towards near-zero values [21]. The optimal λ was chosen among 100 values in the range
[10–5, 105] with logarithmic step.

2.4 Cross-Validation Setup and Model Comparison

To find the optimal values for the hyper-parameters λ and k while controlling for over-
fitting, we employed a search procedure over a range of possible values using cross-
validation (CV). The complete dataset was thus split into a training set and a test set: the
training set was used for tuning the hyper-parameters, and the resulting model was then
evaluated on the left-out test set. We adopted a Leave-One-Out (LOO) cross validation
setup, where just one sample was circularly included in the test set. As a control analy-
sis, we also explored hyper-parameter tuning using nested CV [22]. However, since this
method led to negligible differences compared to the standard CV, for computational
convenience we did not include it in the final analyses.

To compare the models generated by the different feature extraction methods, both
the R2 and the Bayesian Information Criterion (BIC) [23] were calculated (note that
only the non-zero coefficients were used for BIC calculation). Finally, for each method,
the optimal regression coefficients were backprojected in the original space, by means
of a linear transformation through the features’ weights, and restored in the 3D volume
of the template brain [6]. This provides a brain map that displays the predictive voxels
for a given behavioral domain. The machine learning pipeline is depicted in Fig. 1b.

3 Results

The feature extraction methods were first assessed based on their reconstruction error.
For all methods, the reconstruction error decreased when increasing the number of
features (Fig. 2a), and NNMF showed generally higher reconstruction error. Systematic
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Assessment of Machine Learning Pipelines 7

variation of the number of features (k) used as input for regression revealed a pattern
of predictive accuracy (in terms of R2) that was strongly influenced by the feature
extraction method (Fig. 2b). PCA- and NNMF-based models were largely insensitive
to k, whereas performance of the ICA- and DL-based models deteriorated for large k
values. For ICA the performance loss was almost linear and markedly steep when the
number of independent components exceeded the optimal k (here 10), suggesting that
over-decomposition introduces noise and makes the components less informative. In
contrast, the strict order of components’ extraction in PCA implies that increasing k has
no effect on previously extracted features. Nonetheless, at the optimal value of k, all
models showed very good predictive performance with R2 around 0.40.

Fig. 2. a) Reconstruction error as a function of the number of extracted features, separately
reported for each feature extraction method. b) R2 values of the models in predicting language
scores as a function of the number of extracted features. c) PCA + ridge model predictions with
LOO CV for the language domain and d) NNMF + LASSO model predictions for the motor
domain.

Performance of the selected model (i.e., optimized for k) for each feature extraction
method and behavioral score (language vs. motor) is reported in Table 1 (ridge) and Table
2 (LASSO). The tables also report the optimal hyper-parameters values, as well as the
number of non-zero weights in the LASSO regression model after training. Interestingly,
different feature extraction methods led to slightly different optimal hyper-parameters.
The ICA- and DL-based models were chosen with fewer features than the PCA- and
NNMF-based models. A marked difference can be observed between NNMF and the
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8 M. Zorzi et al.

other methods, with k up to six times larger. Regarding the regularization coefficient,
the variability was more substantial for ridge regression than for LASSO.

PCA and NNMF yielded the best predictive accuracy across types of regulariza-
tion and behavioral domains in terms of R2. NNMF combined with LASSO regres-
sion reached the best performance in the prediction of both motor and language scores,
although by a tight margin with respect to PCA + ridge (see model predictions in Fig. 2c
and d). When considering the BIC, on the other hand, the PCA + ridge pipeline was
favored by the lower model complexity (smaller number of weights). We also report as
baseline the performance of models with non-optimized (i.e., fixed) number of features
(Tables 1 and 2). For PCA, we used the principal components cumulatively accounting
for 95% of the variance (k = 30), as used in previous studies [6]. The level of reconstruc-
tion error yielded with these components was matched across feature extraction methods
to select corresponding k values as baseline models (k = 30 for ICA, k = 30 for DL,
k = 65 for NNMF). Importantly, the optimized models were in all cases superior to the
baseline (fixed k) models both in terms of prediction performance and reduced models’
complexity, as also shown by the large gap in terms of BIC. LASSO regression further
reduced the number of predictors by setting some weights to zero. The latter seems to
be particularly important for the NNMF-based models because the selected k was larger
in comparison to the other methods (accordingly, NNMF + ridge was poor in terms of
BIC).

Table 1. Performance of ridge regression in the prediction of language and motor scores. The
selected λ and k values are also reported.

Method Ridge (fixed k) Ridge

R2 BIC λ k R2 BIC λ K

Lang (n = 116) PCA 0.42 413.4 475.1 30 0.43 316.8 298.4 10

ICA 0.31 433.3 46.4 30 0.42 318.7 14.5 10

DL 0.33 430.6 756.5 30 0.39 323.5 117.7 10

NNMF 0.42 580.2 1519.9 65 0.42 580.2 1519.9 65

Motor (n = 108) PCA 0.43 428.9 298.4 30 0.44 333.4 187.4 10

ICA 0.32 446.9 29.2 30 0.43 334.8 9.1 10

DL 0.22 461.7 475.1 30 0.42 312.1 11.5 5

NNMF 0.36 603.7 954.6 65 0.42 571.2 475.1 60

The back-projected weights for the best two models in each domain are depicted in
Fig. 3. The language score was predicted by a broad white matter network encompassing
tracts traditionally associated with linguistic processing, including the superior longitu-
dinal/arcuate fasciculus, predominantly in the left hemisphere. For the motor domain,
the predictive map shows a more circumscribed, subcortical, and bilateral set of white
matter tracts surrounding the basal ganglia (e.g., internal and external capsule) as well
as, more dorsally, parts of the corona radiata.
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Assessment of Machine Learning Pipelines 9

Table 2. Performance of LASSO regression in the prediction of language and motor scores. The
selected λ, and k values and the number of non-zero features (NZ) is also reported.

LASSO (fixed k) LASSO

R2 BIC λ k(NZ) R2 BIC λ k(NZ)

Lang (n = 116) PCA 0.41 358.2 0.055 30(18) 0.42 336.9 0.055 20(14)

ICA 0.30 435.8 0.043 30(30) 0.42 319.3 0.022 10(10)

DL 0.24 354 0.11 30(11) 0.35 316.7 0.055 10(7)

NNMF 0.41 358 0.087 65(18) 0.43 317 0.069 25(10)

Motor (n = 108) PCA 0.38 405 0.055 30(23) 0.43 335 0.022 10(10)

ICA 0.24 459.6 0.003 30(30) 0.43 335.1 0.022 10(10)

DL 0.14 397.3 0.11 30(14) 0.42 313.6 0.001 5(5)

NNMF 0.23 502.5 0.043 65(39) 0.45 451.6 0.055 60(36)

Language

Motor

Ridge-PCA

LASSO-NNMF

Ridge-PCA

LASSO-NNMF

L R

Fig. 3. Back-projected weights for the best two models for prediction of each behavioral score,
highlighting the most predictive white matter tracts.
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10 M. Zorzi et al.

4 Discussion

In this work we systematically compared four unsupervised dimensionality reduction
methods in their ability to extract relevant features from probabilistic structural discon-
nection maps of stroke patients at different levels of compression. We then assessed how
these methods influence a regularized regression model trained on the features to predict
patients’ behavioral performance.

Overall, PCA and NNMF turned out to be the best methods for extracting robust
predictors, followed by ICA and DL. Optimizing the number of extracted features (k) to
be entered as predictors for regression was crucial for the predictive accuracy of ICA-
and DL-based models, but not for PCA and NNMF. Nevertheless, when compared to
non-optimized models (fixed k), we observed that the optimization of k improved the
accuracy for all methods and greatly reduced model complexity, thereby leading to large
gains in terms of BIC. This suggests that good predictive accuracy can be obtained
with a limited number of features. A compact representation is desirable as it improves
model interpretability and it might favor out-of-sample generalization. Interestingly,
while LASSO regression can further reduce model complexity by setting some weights
to 0, we found that it was not superior to ridge regression when the optimization of k
was in place.

Finally, the type of regularizer interacted with the feature extraction method: PCA
optimally combined with ridge regression, whereas NNMF optimally combined with
LASSO regression. These two pipelines achieved the best performance, but PCA +
ridge regression was more consistently the best approach when also considering the
BIC score. However, the differences between these two pipelines (given the optimal
hyperparameters) were small. Indeed, the back-projection of the most relevant features
for the two best models in each domain were similar and neuroanatomically sound.

Overall, our findings represent an important step towards the definition of the opti-
mal pipeline for disconnectome data. Compared to the previous state-of-the-art [6], the
gain in terms of r-squared is marginal (e.g., 2% of variance for language scores) but
this is achieved with a much more parismonius model with just one third of the num-
ber of predictors (10 vs. 29 in [6]). A potential limitation of the study is due to the
relatively small sample size of the patient group, but this simply reflects the lack of
large-scale stroke datasets including both neuroimaging and behavioral data. Further
efforts should be spent in assembling larger-scale datasets, which would allow to deploy
even more powerful predictive models, such as those based on deep learning [24]. Future
work should also extend these results to the prediction of a broader range of behavioral
scores, to better assess whether some feature extraction methods could be more general
than others and to further compare them in terms of interpretability and neuroscientific
accuracy of the predictive maps.
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